The codes for fast computations of viscous transonic flow over wing/body/nacelle/tail configuration

O.V. Karas, V.E. Kovalev

OBJECTIVE:

Development of the code for preliminary aerodynamic design of transonic transport configurations

REQUIREMENTS:

- Negligible computational time and resources. One computation 1~5min. (mean power PC computer)
- High reliability of results, capability to account properly for viscosity effects including moderate separation zones.
- Reliability, convenience for use by a designer. Possibility to be used as a "black box".

COMPUTATIONAL METHOD: VISCOUS-INVISCID INTERACTION

• External inviscid flow:

solution of the conservative full potential equation; "Chimera" technique for complex configurations.

Viscous region:

finite-difference inverse method for calculationof 3-d compressible laminar and turbulent boundary layer;2-d integral or 3-d finite-difference method for viscouswake calculations.

• Viscous-inviscid coupling:

quasi-simultaneous viscous-inviscid coupling scheme. (Rapid obtaining completely self-consistent solution: 6-8 viscousinviscid iterations in case of moderate separation zones.)

EXTERNAL FLOW

- Flexible algebraic 3-d grid generator.
- The solution of the conservative full potential equation by Approximate Factorization (AF) method (first or second order differentiable dissipation).
- "Chimera" algorithm for the calculation of the wing/body/nacelle/tail configuration.

Mesh generation. Wing-body grid.

• Body of revolution angle-preserving mapping onto an infinite strip:

$$\overline{\theta} = \theta$$
 $\overline{x} = \int_{x \to 0}^{x} \left[\frac{1 + (dR/dx)^2}{R^2} \right]^{1/2} dx$

External flow. Approximation.

• CONSERVATIVE FULL POTENTIAL EQUATION

 $\left[\overline{\rho} U/J \right]_{\xi} + \left[\overline{\rho} V/J \right]_{\eta} + \left[\rho W/J \right]_{\zeta} = 0.$

- MODIFIED FINITE-VOLUME APPROXIMATION (Too skewed grids are admissible)
- NON-ISENTROPIC PROPERTIES OF THE FLOW ARE TAKEN INTO ACCOUNT

 FIRST OR SECOND ORDER ENQUIST-OSHER'S TYPE MULTIPLICATIVE DIFFERENTIABLE MONOTONIC ARTIFICIAL DISSIPATION SCHEME (The lack of limiters promotes a high convergence speed)

$$\begin{array}{c} \overbrace{i=2 \quad i=1 \quad i \quad i=2}^{\bullet} \quad \overbrace{i=1 \quad i \quad i=2}^{\bullet} \quad \overbrace{i=1 \quad i \quad i=2}^{\bullet} \quad \overbrace{i=1}^{\bullet} \quad \overbrace$$

External flow. Iterative solution.

• The system of linear equation for the correction is constructed on the basis of the approximate Newton's fluxes linearization. The artificial density is linearized.

$$\begin{bmatrix} d_{i,j,k}^{(3)} \vec{\delta}_{\xi} - d_{i,j,k}^{(2)} \vec{\delta}_{\xi} + d_{i,j,k}^{(5)} \vec{\delta}_{\eta} - d_{i,j,k}^{(4)} \vec{\delta}_{\eta} + \vec{\delta}_{\zeta} d_{i,j,k+1/2}^{(6)} \vec{\delta}_{\zeta} + d_{i,j,k}^{(8)} E_{\xi}^{+} \vec{\delta}_{\xi} - d_{i,j,k}^{(7)} E_{\xi}^{-} \vec{\delta}_{\xi} \end{bmatrix} C_{i,j,k} = -r_{i,j,k}$$

$$C = \Phi^{(n)} - \Phi^{(n-1)}$$

• The operator for the correction is constructed on the basis of approximate factorisation as a product of two operators:

$$\begin{split} \left[\sigma \bar{\delta}_{\zeta} d^{(6)}_{i,j,k+1/2} &- d^{(3)}_{i,j,k} \bar{\delta}_{\xi} + d^{(2)}_{i,j,k} \bar{\delta}_{\xi} - d^{(5)}_{i,j,k} \bar{\delta}_{\eta} + d^{(4)}_{i,j,k} \bar{\delta}_{\eta} - \right. \\ & \left. - d^{(8)}_{i,j,k} E^{+}_{\xi} \bar{\delta}_{\xi} + d^{(7)}_{i,j,k} E^{-}_{\xi} \bar{\delta}_{\xi} \right] \left[\sigma - \vec{\delta}_{\zeta} \right] C_{i,j,k} = \sigma \omega r_{i,j,k} \end{split}$$

External flow. Iterative solution.

• Direct sweep (intermidiate values \overline{C}_{iik} definition)

$$\begin{split} & d_{ijk}^{(1)}\overline{C}_{ijk} - d_{ijk}^{(2)}\overline{C}_{i-1jk} - d_{ijk}^{(3)}\overline{C}_{i+1jk} - d_{ijk}^{(4)}\overline{C}_{ij-1k} - d_{ijk}^{(5)}\overline{C}_{ij+1k} - \\ & - d_{ijk}^{(8)} \overrightarrow{\delta}_{\xi} \overline{C}_{i+1jk} + d_{ijk}^{(7)} \overleftarrow{\delta}_{\xi} \overline{C}_{i-1jk} = \overline{r}_{ijk} \qquad \overline{r}_{ijk} = \sigma \omega r_{ijk} - \sigma d_{ijk-1/2}^{(6)}\overline{C}_{ijk-1/2} \overline{C}_{ijk-1/2} \overline{C}_{$$

In plane ζ =const an approximate solution for intermediate values \overline{C}_{ijk} is carried out on the base of LU approximate decomposition + GMRES algorithm. (L and U are four-diagonal matrixes)

Inverse sweep (correction C_{ijk} definition)

$$\left[\sigma{-}\vec{\delta}_{\zeta}\right]C_{i,j,k}=\overline{C}_{i,j,k}$$

CALCULATION OF THE 3-D COMPRESSIBLE BOUNDARY LAYER

- Finite-difference method for calculation of 3-d compressible laminar and turbulent boundary layer: *Predictor-corrector or upwind approximation scheme*
- Separation regions: Raihner and Flugge-Lotz approximation + inverse mode
- Viscous wake:
 2-d integral method (Green) at wake sections
 3-d finite-difference method
- Algebraic or not equilibrium (Spalart-Almaras) eddy viscosity models.

SYSTEM OF EQUATIONS OF 3-D COMPRESSIBLE BOUNDARY LAYER

$$\frac{\partial}{\partial x}(\rho u h_{2} \sin \theta) + \frac{\partial}{\partial z}(\rho w h_{1} \sin \theta) + h_{1}h_{2} \sin \theta \frac{\partial}{\partial y}(\rho v) = 0$$

$$\rho \frac{u}{h_{1}} \frac{\partial u}{\partial x} + \rho \frac{w}{h_{2}} \frac{\partial u}{\partial z} + \overline{\rho v} \frac{\partial u}{\partial y} - \rho k_{1}u^{2} \cot \theta + \rho k_{2}w^{2} \csc \theta + \rho k_{12}uw =$$

$$= -\frac{\csc^{2} \theta}{h_{1}} \frac{\partial p}{\partial x} + \frac{\cot \theta \csc \theta}{h_{2}} \frac{\partial p}{\partial z} + \frac{\partial}{\partial y}(\mu \frac{\partial u}{\partial y} - \overline{\rho u' v'})$$

$$\rho \frac{u}{h_{1}} \frac{\partial w}{\partial x} + \rho \frac{w}{h_{2}} \frac{\partial w}{\partial z} + \overline{\rho v} \frac{\partial w}{\partial y} - \rho k_{2}w^{2} \cot \theta + \rho k_{1}u^{2} \csc \theta + \rho k_{21}uw =$$

$$= \frac{\cot \theta \csc \theta}{h_{1}} \frac{\partial p}{\partial x} - \frac{\csc^{2} \theta}{h_{2}} \frac{\partial p}{\partial z} + \frac{\partial}{\partial y}(\mu \frac{\partial w}{\partial y} - \overline{\rho w' v'})$$

FINITE-DIFFERENCE STENCILS FOR BOUNDARY LAYER CALCULATION

BOUNDARY LAYER. CALCULATION PROCEDURE

• algebraic system for the vector of the boundary layer parameters $\vec{\Delta}_{i,k}$

$$\begin{bmatrix} D \end{bmatrix} \vec{\Delta}_{i,k} = \vec{R} + \vec{R}_{\xi} \left(p_{\xi} \right)_{i,k} + \vec{R}_{\zeta} \left(p_{\zeta} \right)_{i,k} \\ \vec{P}_{\xi}, p_{\zeta} - \text{ partial pressure derivatives} \\ \begin{bmatrix} \vec{R}, \vec{R}_{\xi}, \vec{R}_{\zeta} - \text{ known vectors} \\ \begin{bmatrix} D \end{bmatrix} - \text{ known matrix} \\ \end{bmatrix}$$

 representation of the solution as a linear combination of partial solutions (pressure derivatives are considered as parameters):

$$\vec{\Delta}_{i,k} = \vec{Y} + \vec{X} \left(p_{\xi} \right)_{i,k} + \vec{Z} \left(p_{\zeta} \right)_{i,k} \qquad \left[\begin{bmatrix} D \end{bmatrix} \vec{Y} = \vec{R}, \quad \begin{bmatrix} D \end{bmatrix} \vec{X} = \vec{R}_{\xi}, \quad \begin{bmatrix} D \end{bmatrix} \vec{Z} = \vec{R}_{\zeta}$$

QUASI-SIMULTANEOUS COUPLING SCHEME:

ALGORITHMS OF VISCOUS-INVISCID INTERACTION:

QUASI-SIMULTANEOUS COUPLING SCHEME:

Wing-body W4: computational mesh

Wing/body W4: Comparison with Euler computation (inviscid flow)

Wing/body W4 configuration M=0,78 Alpha=0.84 Re =12 mill

Wing/body W4 configuration M=0,78 Alpha=1.39 Re =12 mill

Wing/body W4 configuration

M=0.78 Alpha=0.84 Re=12 mill

WING/BODY B-747

Surface grid: wing 3741 nodes (129*29), body 4175 nodes (167*25)

WING/BODY B747. Comparison with Euler computation (inviscid flow)

WING/BODY B747.

M=0.8 Re=5.76 mill Clift=0.35

Wing/Body DLR-F4

BLWF calculationexperiment

Wing/body configuration: comparison with BAE Euler multiblock code. inviscid

Buffet onset prediction. Wing-body Re=50 mill.

Wing-body Re=50 mill M=0.85

alpha=2.6

Nacelle grid: "Chimera" approach

Deck tail grids : "Chimera" approach.

T-type tail grid : "Chimera" approach.

Deck tail: Grids interaction

T-type tail: Grids interaction

Side flow possibility incorporation.

SIDE FLOW

SYMMETRIC FLOW

Deck tail or T-type horizontal tail

T-type horizontal tail

M=.78, ALPHA=2°, BETA=3°, Re=3*10⁶

Deck and T-type horizontal tail: Loads

New finite-difference scheme : High Mach number calculation

New finite-difference scheme : High Mach number calculation

VARIOUS CONFIGURATIONS. TRANSONIC FLIGHT REGIMES.

Winglets : Computational grid

Winglets : Winglet pressure distribution

Winglets : Cp distribution. Surface streamlines.

Winglets : Section Cp distribution. M=.6, Alpha=4.

Winglets : Section Cp distribution. M=.8, Alpha=0.

Winglets : Section Cp distribution. M=.8, Alpha=4.

MAIN POSSIBILITES (*BLWF28 - BLWF58 versions*)

- Subsonic free stream Mach number (up to $M\infty = 1$.)
- Side flow.
- Viscous (viscous wakes) on wing, winglets and tail surfaces (moderate separation zones). Prescribed transition.
- Configuration:

wing/body

- + nacelles (near the wing or near the body)
- + tail (vertical or/and horizontal, deck tail or T-type tail)
- + winglets on a wing (upper or/and lower winglets);

isolated body (isolated body +tail) configurations.

Additional possibilities:

- Control surfaces simulation (without gaps) for wing and tail.
- Calculations in view of steady maneuver.
- Calculation in view of elastic deformation of wing, body and tail (simple beam theory is used).
- 3-d boundary layer calculation on a body.
- Propellers slipstream simulation (actuator disk + rigid slipstream model).

Winglets : Elastic effect, Cp distribution

Steady Manoeuvre

 α = const. β = const.

Steady Manoeuvre: horizontal turn

Steady Manoeuvre: vertical turn

Steady Manoeuvre: rotation on a roll

Control surfaces: **Pressure distribution**

M=.78, ALPHA=2°, BETA=0°, Re=3*10⁶

Control surfaces: Ailerons effect

Propeller slipstreams: Pressure distribution.

Propeller slipstreams: Loads.

Boundary layer on a body: Streamlines

Cp distribution

BLWF computation

Side view

NS computation

Surface streamlines and Cf distribution

BLWF computation Side view

NS computation

BLWF100, BLWF110 - the versions based on Euler equations

Fast implicit scheme for solving steady Euler equations.

$$\partial_{t} \mathbf{W} + \nabla \cdot \mathbf{F}(\mathbf{W}) = 0 \qquad \mathbf{F}(\mathbf{W}) = \begin{pmatrix} \rho \vec{q} \\ \rho u \vec{q} + \rho \vec{i} \\ \rho v \vec{q} + \rho \vec{j} \\ \rho w \vec{q} + \rho \vec{k} \\ \rho h \vec{q} \end{pmatrix} \qquad \mathbf{W} = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho w \\ \rho e \end{pmatrix}$$

Approximation:

- finite volume, cell centered approach;
- Osher scheme for numerical fluxes definition (the main advantage – differentiability);
- energy equation is not solved the total enthalpy is fixed

Fast implicit scheme for solving steady Euler equations.

Newton like iterative procedure:

• On iteration the system of linear equation for the correction is constructed on the basis of the Newton's fluxes linearization:

 the approximate solution of the resulting total system of matrix equations for correction is carried out using the GMRES algorithm preconditioned with simple LU approximate decomposition

Fast implicit scheme for solving Euler equation.

Fast implicit scheme for solving Euler equation.

Codes comparison. DLR-F4 test: M=0.75, al=0.9, Re=3*10⁶

•	•	ONERA	experiment
•	•	DRA	experiment
•	٠	NLR	experiment

Degradation of the inviscid Euler solution. Inverse swept wing configuration M=0.70 Alpha=4.5

Cauchy-Riemann formulation.

Euler	total enthalpy = const	
formulation	$ \rho_t + div \ (\rho \ \vec{q}) = 0 $	
	$(\rho u)_{t} + (\rho u^{2} + \rho)_{x} + (\rho uv)_{y} + (\rho uw)_{z} = 0$	
unknowns: ρ , u , v , w	$(\rho v)_t + (\rho v u)_x + (\rho v^2 + \rho)_y + (\rho v w)_z = 0$	
	$(\rho w)_{t} + (\rho wu)_{x} + (\rho wv)_{y} + (\rho w^{2} + \rho)_{z} = 0$	
	↓ ↓	
<u>Cauchy–Riemann</u> <u>formulation</u>	total enthalpy = const entropy = const	
unknowns: <i>u, v, w</i>	$u_{t} + [(\rho u^{2} + p)_{x} + (\rho uv)_{y} + (\rho uw)_{z} - 2u \operatorname{div} (\rho \vec{q})]/\rho = 0$ $v_{t} + [(\rho vu)_{x} + (\rho v^{2} + p)_{y} + (\rho vw)_{z} - 2v \operatorname{div} (\rho \vec{q})]/\rho = 0$ $w_{t} + [(\rho wu)_{x} + (\rho wv)_{y} + (\rho w^{2} + p)_{z} - 2w \operatorname{div} (\rho \vec{q})]/\rho = 0$	

 Cauchy-Riemann formulation is identical to potential flow gas model, but the flow calculation is carried out without the introducing of the potential, the velocity components are used as unknowns.

Codes comparison. Inverse swept wing configuration M=0.70 Alpha=6 (Inviscid)

Codes comparison. DLR-F4 test: M=0.75, al=0.18, Re=3*10⁶

Codes comparison. DLR-F4 test: M=0.75, al=0.9, Re=3*10⁶

•	•	ONERA	experiment
•	•	DRA	experiment
•	٠	NLR	experiment

BLWF120 - unsteady time-harmonic calculation.

Unsteady time-harmonic problem. An approach based on linearized full potential equation.

$$\Phi(\mathbf{r},t) = \Phi_0(\mathbf{r}) + \operatorname{Re}\left[\phi(\mathbf{r}) e^{i\omega t}\right] = \Phi_0 + \phi_{\text{real}} \cos \omega t - \phi_{\text{imag}} \sin \omega t$$

The main difficulties

- 1. Computational mesh must be dense enough in the whole field for the describing of the wave-type solution.
- 2. Sommerfeld condition require the high-resolved solution near the external boundary of the computational region.
- 3. The usual solvers are not applicable to Helmholtz -type equation:
 absence of a diagonal dominance in the resulting system of finite-difference equations;
 - the resulting system is not positive defined.

Unsteady time-harmonic problem. An approach based on linearized Euler equations.

$$w(\mathbf{r}, \mathbf{t}) = w_0(\mathbf{r}) + \operatorname{Re}\left[\Delta w \ e^{i\omega t}\right]$$
$$\Delta W = \Delta W_{\text{real}} + i \ \Delta W_{\text{imag}} = \begin{pmatrix} \Delta \rho \\ \Delta \vec{q} \end{pmatrix} \qquad \text{Entropy preservation:} \quad \Delta p = C_0^2 \ \Delta \rho$$

Time derivatives:							
$\partial w / \partial t =$	<i>i</i> ω ΔW	e ^{iωt}					

Flat Plate Harmonic Motion : Influence of the Far-Field Mesh density M=0.35, Sh=1.5

Flat Plate Harmonic Motion : Influence of the Far-Field Mesh density M=0.35

Flat Plate Harmonic Motion : Lift Derivatives M=0.35

Flat Plate Harmonic Motion : Pitching Moment Derivatives M=0.35

Flat Plate Harmonic Motion : Lift Derivatives M=0.80

Flat Plate Harmonic Motion : Pitching Moment Derivatives M=0.80

NLR F5 WING test : Pitching Oscillations.

Tested Wing Configuration

Calculated Configuration

F5 wing test : Steady Cp distribution. (Run152, M=.9, Al=0.5)

F5 wing test : Pitching Oscillations. (Run383, M=0.60, h=40 Hz).

F5 wing test : Pitching Oscillations. (Run369, M=0.90, h=20 Hz).

F5 wing test : Pitching Oscillations. (Run370, M=0.90, h=40 Hz).

Code comparison for UTSP and Full Potential codes: UTSPV21, TCITRON, HLIFP

F5 wing test : Pitching Oscillations. (Run370, M=0.90, h=40 Hz).

Code comparison for EULER codes: UEMB, EUL3DU, EUGENIE, PMP3D

NLR F5 WING test : Trailing Edge Control Surface Oscillations.

Tested Wing Configuration

Calculated Configuration

F5 wing test : Trailing Edge Control Surface Oscillations (20 Hz).

CPU time (in hours) for oscillating wing problem. Comparison of the different codes (from RTO-TR-26)

LANN Wing test : Pitching Oscillations

Calculated Configuration

LANN test : Steady Cp distribution. M=0.82 Alpha=0.6

LANN test : Real part of unsteady Cp distribution.

LANN test : Imaginary part of unsteady Cp distribution.

CLIPPED Delta Wing test : **Pitching Oscillations**

Tested Wing Configuration

Calculated Configuration

CLIPPED delta wing test : Steady Cp distribution.

CLIPPED delta wing test : Unsteady Cp distribution.

RSW (Rectangular Supercritical Wing) test : Pitching Oscillations

Calculated Configuration

RSW test : Steady Cp distribution.

RSW test : Unsteady Cp distribution.

BACT (Benchmark Active Controls Technology) test : Trailing Edge Control Surface Oscillations.

Tested Wing Configuration

Calculated Configuration

BACT wing test : Trailing Edge Control Surface Oscillations.

BACT wing test : Trailing Edge Control Surface Oscillations.

BACT wing test : Trailing Edge Control Surface Steady Deflection.

